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Abstract— In this paper we apply techniques for numerical
estimation of system resolution from imaging, to the regres-
sion problem of relating biological data to phenotypes. Our
approach can be viewed as an extension of Backus-Gilbert
theory, which attempts to find the most concentrated estimator
that may be reliably computed in an inverse problem. Applied
to a regression model, we estimate a minimal combination of
collinear variables that may be found in a predictor, which gives
a robust multivariable estimate of the network relationships
in the data. Our extension of this approach incorporates a
sparsity prior in order to adapt the concept to the high noise
and small sample regime. The result is a compromise between
the Backus-Gilbert and sparse regularized estimates, which
may be adjusted to trade-off benefits of both and provide
a result which we demonstrate to be more robust. This is
applied to a dataset containing fMRI activity maps and SNP’s
for subjects with schizophrenia and related disorders. We find
the resolution estimate identifies plausible modular behavior
among neighboring variables and between regions. We further
demonstrate the ability to find differences in these relationships
using different response variables or additional data, providing
a means to extract more specialized information.

I. INTRODUCTION

Our focus is the challenging problem of relating biological
data to observed behavioral traits. In engineering terms, all
the data can be viewed as being extremely noisy, with a
very low SNR; here noise represents not only imperfections
of our data collection, but also the shortcomings of any
model we might utilize, particularly in terms of the large
amount of hidden variables. While the best way to address
this scenario remains a very open problem, many promising
results have been demonstrated using approaches ranging
from univariate statistical testing [6] to sophisticated machine
learning algorithms [10]. However difficulties in repeatability
remain, and Psychiatry has gained relatively little in terms
of clinical translation of recent results, lagging well behind
many other areas of medicine in this regard [8]. The dif-
ficulty in modeling this noisy problem is compounded by
high correlations between data variables due to underlying
network interactions between variables.

In the field of inverse problems, there are well-developed
approaches to characterize the correlations in underdeter-
mined systems. In particular, the concept of resolution may
be viewed as a metric for how many nearby variables
are irretrievably entangled with a variable of interest [4].
A mathematical perspective is provided by Backus-Gilbert
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theory [1], which seeks a linear combination of the unknowns
which may be robustly estimated, often viewed as an average
over a local region. This average is the low resolution
estimate and its size is the resolution at that point. We
have recently developed an extension of this approach which
incorporates statistical priors such as requirement for sparsity
[5]. With this result, we reduce the requirement for robust
estimability to only sparse sets of variables which might
relate to a response variable, preventing the unrealistically
complex combinations which likely result from overfitting;
this is particularly important in situations with far more
variables than unknowns and high levels of noise.

In this paper we will adapt this approach to the predictor
estimate in a linear regression relating data to psychiatric
metrics. The resulting estimate, telling us how well a chosen
seed variable can be “resolved”, provides a robust multivari-
able metric of relationships between variables, in terms of
those most likely to relate to the response variable. More
than simply a metric for correlations or an expectation of
the variable itself, the approach tells us the extent to which
a regression can unmix variables, as well as which variables
remain irretrievably mixed. We first demonstrate the estimate
as a novel approach to estimating a region of interest (ROI)
given a choice of seed location, then we demonstrate that the
method finds variations resulting from additional data types
or different response variable. Finally we demonstrate the
robustness of the estimate with cross-validation.

II. METHODS

We use the linear model Ax = b + n where A is a
m × n data matrix with n > m, containing samples (e.g.,
for each subject) as rows, and variables (e.g., a particular
image voxel) as columns; b is the response variable such as
clinical metric of symptom severity; the (unknown) solution
x is the predictor that relates A to b; and n is a noise vector
about which we have only statistical information. The goal
of directly solving this model is of course a simultaneous
estimate of xk for all k = 1, ..., n. We may write the
functional to calculate each of these as ek, a vector of zeros
with a “1” in the kth element, (so xk = eTk x). A Backus-
Gilbert estimate relaxes this functional (for each k) to some
denser vector, ck such that cTk x may be reliably estimated
despite the underdetermined nature of the problem. In an
imaging system, for example, we would desire ck to be
nonzero only in a small region near k, so has a concentrated
spatial spread. The requirement that cTk x may be reliably
estimated, in statistical terms, means that the probability
distribution of cTk x is itself narrow for all {x | Ax ≈ b}.



In our regression problem, we impose different require-
ments for c itself, but we retain the key requirement of a
narrow statistical spread for the estimate. This amounts to
finding properties of our dataset which are robust despite the
severe limitation in number of samples. In a typical case with
perhaps hundreds of samples versus hundreds of thousands
of variables, more information is necessary. So, to restrict
the solutions x to only those with the most salient variables,
we also include a requirement for sparsity. This results
in a statistical estimate that lacks a closed form solution,
but optimization techniques may be used to compute the
result numerically. We can test the spread of cTx with the
optimization problem of Eq. (1),

p = max
x

cTx

P (x) ≥ P1

P (Ax− b) ≥ P2

− min
x

cTx

P (x) ≥ P1

P (Ax− b) ≥ P2

(1)

The constraint P (x) ≥ P1 encodes our requirement for x to
be sufficiently sparse using a sparsity-inducing distribution
P (x), and the constraint P (Ax − b) ≥ P2 encodes the
requirement that Ax ≈ b based on a distribution for the
noise. If we utilize a Laplace distribution to enforce sparsity,
and a Gaussian distribution for the noise n, then we can form
the following conic program which is equivalent to Eq. (1),

p = max
x,x′

cT (x− x′)

‖x‖1 ≤ α1

‖x′‖1 ≤ α1

‖Ax− b‖2 ≤ α2

‖Ax′ − b‖2 ≤ α2.

(2)

The parameters α1 and α2 relate to the probability cutoffs
P1 and P2 and must be chosen (we will consider this in
more detail later). To optimize c such that the solution to
Eq. (1) is sufficiently small (i.e., such that p ≤ ε for some
ε we choose), we utilize the following convex optimization
problem,

c∗ = argmin ‖c‖1
c,y,y′,

λ1,λ′
1,λ2,λ′

2

bT (y + y′) + α1(λ1 + λ′1) + α2(λ2 + λ′2) ≤ ε
‖ATy − c‖∞ ≤ λ1
‖ATy′ + c‖∞ ≤ λ′1
‖y‖2 ≤ λ2
‖y′‖2 ≤ λ′2
ck = 1.

(3)

In Eq. (3), c is the functional we optimize to describe a
minimal set of correlated variables over sparse models; ε,
α1, and α2 are the statistical parameters which limit the
spread of values cTx may take and the requirements based
on the sparsity and noise, which we will address in the next
section; y, y′ λ1, λ′1, λ2, and λ′2 are used internally in the
optimization.

The following Theorem ensures any feasible c found by
Eq. (3) has the required limits on cTx and statistical bounds
on x,
Theorem 1. If there exists a y, y′, λ1, λ′1, λ2 and λ′2 such

that c is a solution to Eqs. (4), then cTx is limited to the
range ε.

bT (y + y′) + α1(λ1 + λ′1) + α2(λ2 + λ′2) ≤ ε
‖ATy − c‖∞ ≤ λ1
‖ATy′ + c‖∞ ≤ λ′1
‖y‖2 ≤ λ2
‖y′‖2 ≤ λ′2.

(4)

Proof. We can test the limits of cTx with the optimization
problem of Eq. (2). By forming the dual [2] of the optimiza-
tion problem in Eq. (2), we can get an upper bound on the
optimal. The dual optimization problem is

d = min
y,y′,

λ1,λ′
1,λ,λ

′

{
bT (y + y′) + α1(λ1 + λ′1) + α2(λ+ λ′)

}
‖ATy − c‖∞ ≤ λ1
‖ATy′ + c‖∞ ≤ λ′1
‖y‖2 ≤ λ2
‖y′‖2 ≤ λ′2,

(5)
The weak duality condition [2], which always holds, tells us
that p ≤ d. By constraining the objective of Eq. (5) to be
bounded by ε, we get the conditions of Eqs. (4). �

The objective in Eq. (3), combined with the constraint that
ck = 1, enforces a variation on the concept of resolution. It
does not require c to be spatially concentrated at any point,
but only requires it to include a seed variable at k. This
provides an estimate of the extent of modules or networks
which include this variable. Next we will demonstrate the
application of this approach to neuroimaging data.

III. RESULTS

We used data from a study comparing psychiatric patients
to controls during an auditory sensorimotor task, conducted
by The Mind Clinical Imaging Consortium (MCIC) [7]. The
study included 80 participants who were diagnosed with
schizophrenia, schizophreniform or schizoaffective disorder,
and for whom genomic data was also collected. The fMRI
data were preprocessed using the statistical parametric map-
ping (SPM) software [9]; contrast images associated with the
auditory stimuli were generated and used in the subsequent
analysis. The genomic dataset consists of Single Nucleotide
Polymorphism (SNP) measurements for roughly 800,000
locations for each subject. Neuropsychological assessments
were also collected for each subject, including estimates of
symptom severity for positive, negative, and disorganization
symptoms. Further details of the data collection and prepro-
cessing can be found in [3].

First we consider the parameters, ε, α1, and α2. Note that
in the limit of large α1, sparsity is not enforced at all. Mean-
while in the limit of small α1 we achieve the LASSO solution
(further reductions in α1 result in no feasible x at all). If we
compute xLASSO = argmin

x
‖Ax − b‖22 + λLASSO‖x‖1,

then using cross-validation we can select the best λLASSO. In
effect, this fits the statistical distributions for n and x to our
data. Then we can use ‖xLASSO‖1 and ‖AxLASSO−b‖2 as
starting points. Further we consider that ε gives the allowable



spread of cTx, which needs to be small to be meaningful;
the smaller it is, the more accurate our estimate is required
to be. Hence we will select an ε that is as small as possible.
Given that ε gives the allowable spread of cTx while the
other two parameters restrict the spread of x, there is clearly
a close relationship between these parameters. Our approach
will be to set α2 = ‖AxLASSO − b‖2. Then based on data
analysis we will choose a δ1 such that α1 = ‖xLASSO‖1+δ1,
imposing a relaxation of the cutoff to allow the spread of the
distribution to restrict our c.

If Fig. 1 we give an example which uses the fMRI contrast
images for A, the sum over all symptom scores for b, and
where the seed variable location k is chosen as the geometric
center of a ROI (left superior temporal gyrus) in the AAL
parcellation scheme [11]. The three columns of figures give
the frontal, sagittal, and horizontal projections, respectively.
We can see both intriguing similarities as well as differences

Frontal Sagittal

81

Horizontal

Frontal Sagittal Horizontal

Frontal Sagittal Horizontal

Fig. 1. Projections of c calculated using fMRI contrast maps and total
symptom phenotype, with ROI 81 as seed; AAL ROI itself (top row),
Backus-Gilbert estimate (middle row), Resolution estimate with δ1 = 0.01
(bottom row). Note the estimation did not impose concentration or locality
near the ROI, only that the center pixel of the ROI be included.

between the resolution estimate and the RI parcel. Also note
the modular and localized shape that resulted (despite not
being imposed by the algorithm) which seems biologically
plausible. In fig. 2 we plot the spread (over variables) of
the c estimates versus δ1 the relaxation of the sparsity
constraint on x; at small relaxation we essentially have
c = ek, while at large relaxation we have the Backus-Gilbert
resolution estimate, which is poor due to the limited amount
of data. Our approach is to choose a value for δ1 in between
these extremes such that we retain only the most significant
variables, and so we choose a point in the middle of the
transition.

Next we provide an example using a seed at the center of
the Left Medial Orbitofrontal cortex (ROI 26). The resolution
is given in Fig. 3 along with the AAL mask and univariate
correlation of pixels with the same seed. To demonstrate the

Relaxation
10-4 10-2 100 102

R
es

ol
ut

io
n 

(n
or

m
al

iz
ed

 p
ea

k 
va

lu
e)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROI 1

ROI 81

ROI 5

ROI 89

Fig. 2. Estimates of resolution versus λ1 for multiple different ROI; a
selection of δ1 = 0.01 achieves an intermediate value that removes most
of the background.
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Fig. 3. ROI 26: projections of AAL mask (top row), univariate correlation
with seed (middle row), and resolution estimate (bottom row).

ability to discern changes due to different data, we calculated
the occupancy of c in each ROI mask, computed for ROI
26 again for four different scenarios, compared in Fig. 4.
The first two scenarios compare the use of negative and
positive symptoms as response variables, and the next two
compare the use of fMRI data alone to fMRI data combined
with SNP’s. The different clusters of numbers in the plots
identify which ROI’s are significant in different combinations
of scenarios. In particular the numbers in the upper left and
lower right identify ROI which are only contained in the
resolution estimate for one of the scenarios.

Finally we will demonstrate the robustness of the approach
using cross-validation. Here we choose the ROI to produce
a feature with the goal of best predicting the phenotype,
and test the resulting feature’s accuracy each time. The
result is compared to a LASSO predictor (parameter which
maximizes accuracy selected by cross-validation), and a
version of a Backus-Gilbert estimate. In Table 1 we see that
the proposed method achieves superior accuracy to the other
methods, which may be viewed as extremes on the same
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Fig. 4. Net weight of each ROI for c calculated for ROI 26 (Left Medial
Orbitofrontal cortex) using positive symptoms as phenotype versus the result
with negative symptoms (top); Net weight of values in each ROI using fMRI
data alone for A versus combing fMRI and SNP data, net symptoms as
phenotype (bottom).

TABLE I
ACCURACY OF DIFFERENT FEATURES COMPARED TO PHENOTYPE USING

10-FOLD CROSS-VALIDATION.

Method Avg. Accuracy STD of Accuracy
LASSO 61.4 % 11.7 %
δ1 = 0.10 65.8 % 10.3 %

Backus-Gilbert 58.6 % 13.8 %

continuum.

IV. DISCUSSION

We used a sophisticated resolution estimation technique
to measure how well a chosen variable may be “resolved”
versus other variables given our dataset. Preliminary re-
sults show that the method produces new versions of data-
dependent ROI, with outputs containing realistic-looking
modular shapes. The shapes of the significant regions differ
from the AAL ROI masks in plausible ways, such as by a
rotation or more-limited extent.

We also demonstrated changes resulting from using a
different response variable or additional data. When positive
symptoms were used as response variable instead of negative
symptoms, for example, ROI 116 (Cerebellar Vermis) promi-
nently gained significant weighting. This means the activity
at that point was no longer independently resolvable versus
the seed, and implies a network interaction. When SNP’s

were used in addition to fMRI contract images, meanwhile, a
significant number of ROI became independently-resolvable
from the seed (group in the lower right corner), but a small
number went the other direction. This can provide a means
to understand the network of interactions between multiple
modalities of information, such as neuroimaging activity and
genomic data.

Finally we demonstrated promising preliminary results
suggesting the robustness of the estimate, based on cross-
validation. The need to determine parameters ε, α1, and α2

remains a difficulty with the approach, but the mathematical
basis for the method provides a valuable interpretation in any
case; Values which are nonzero in the resolution estimate
are those which cannot be made independent of the seed
using a linear model using the assumptions of noise level
and sparsity we chose.
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